

IPv6 Migration Overview and Solutions

José Luis Serrano

May 2014

Agenda

- ✓ Technology Overview
- ✓ Application Delivery
- ✓ A10 Networks Product Overview

Why IPv6?

> IPv4 Exhaustion

 More people & devices connected requiring an IP address

IPv6 Adoption

- More adoption in 2011 than all previous years combined
- Increased attention -World IPv6 Day
- 31 billion connected devices by 2020 (Intel study)

IPv4 Blocks Available

Source: ARIN

Cellphone

TV

Surveillance

Game Console

Digital Weight Scale

Digital DVD Recorder

Car

IPv6 Website Reachability

IPv6 Reachability Among Top 1M

Source : Comcast IPv6 Adoption Monitor

Why is IPv6 not Already Widely Used Today?

- IPv6 requires a full IPv6 chain of communication
 - From End Devices / Clients (desktop, laptop, game device, smartphone)
 - To Service Providers (Internet Service Providers, Mobile Network Operators)
 - ◆ To Enterprise / Content Providers

Challenges

- Relatively low percentage of V6 content availability
- Lack of Home CPE device support
- IPV4 backwards Compatibility
- > IPV4/V6 Migration Deployment and Scale
 - Throughput
 - NAT sessions
 - ALG support
 - Logging

Transition to IPv6

- Carrier Grade NAT (CGN)
 - Flexibility, Adaptability and transparency
- IPv6 Migration No one migration solution fits all
 - Each solution has its own pros & cons
 - Standards proposals are dynamic

Technology Overview

A10 IPv6 Migration Solution

- > IPv4 Preservation
 - Technology: CGN
 - Deployment Models: NAT44 (Mobile), NAT444 (Wireline)
- > IPv6 Migration Technologies
 - Stateful
 - **⋄** DS-Lite
 - **⋄ NAT64 / DNS64**
 - Stateless
 - ♦ 6rd
 - **♦ Stateless NAT46**
 - Lightweight
 - ♦ DS-Lite LW4o6

Translation

CGN (IPv4 Extension)

Carrier-Grade NAT (CGN)

- Requirements for an ISP NAT device
 - Highly transparent
 - existing user applications continue to work
 - Minimal to no impact on customers
 - Well defined NAT behavior
 - new user applications can easily be developed
 - ♦ Consistent
 - ⋄ Deterministic
 - Fairness in resource sharing
 - User guarantees and protection
 - Works for both client-server (traditional) and clientclient (P2P) applications

Carrier-Grade NAT (CGN)

Based on the following IETF RFCs and Drafts

- ◆ BEHAVE-TCP (RFC 5382)
- ◆ BEHAVE-UDP (RFC 4787)
- ◆ BEHAVE-ICMP (RFC 5508)
- CGN (<u>draft-ietf-behave-lsn-requirements-08</u>)

> Primary Features

- Sticky Internal IP to External IP mapping
- Endpoint-independent mapping & filtering
- Hair-pinning support
- Fairness in sharing the resources
 - User quota and connection limits
 - Session limits
 - Extended quota for "always-available" services e.g. DNS, Email, etc.

Large Scale NAT Topology (NAT44)

Single Layer of NAT

- Provider assigned end devices
- Ideal for mobile handsets

CGN/LSN - Topology - NAT444

Application Delivery

Carrier Grade NAT

Protocol	Inside Global	Inside local	Outside Local	Outside Global
UDP	70.132.116.89	172.16.204.35	186.212.8.189	186.212.8.189

End Point Independent Mapping (EIM)

Source IP: Port	Dest IP:Port	Source IP: Port	Dest IP:Port	
X:x	Y1:y1	X1:x1	Y1:y1	
Host X	Inside	Outside	Host Y1 Host Y2	
Source IP: Port	Dest IP:Port	Source IP: Port	Dest IP:Port	
X:x	Y2:y2	X2:x2	Y2:y2	

 $EIM \rightarrow X1:x1 = X2:x2$ for all Y:y (Y1:y1 and Y2:y2)

End Point Independent Filtering

Internal	External	Filter
A:1024/B:8080	X:9001/B:8080	*:*/X:9001

AX(config)#ip nat Isn endpoint-independent-filtering enable

Hair pining

- Two clients Host A and Host B behind a common NAT device
- Host A to Host B communication using the external binding

NAT Transversal applications

> P2P - NAT Transversal mechanisms

- ◆ STUN Servers.
- Hole punching
- TURN
- ◆ ICE

Validated Applications over A10 CGN

- Bit Torrent/uTorrent file leeching
- Bit Torrent/uTorrent file seeding
- ✓ PJSIP
- ✓ SIP
- Skype text chat
- Skype video chat
- X-Lite (for SIP calls)
- ✓ H.323v2
- ✓ Internet Archive audio streaming
- Internet Archive file download
- Internet Archive video streaming
- LG BR DVD online streaming
- MS Smooth streaming
- Pandora internet radio
- ✓ REALAUDIO
- SlingCatcher
- ✓ Video streaming over Joost
- Video streaming over Netflix
- Video streaming over YouTube
- ✓ Web conferencing (GTM)
- ✓ Webcam

- ✓ DCE RPC Services
- ✓ ICMP
- ✓ LG remote Telnet/SSH
- ✓ MGCP
- ✓ Multiple IPsec ESP Tunnels
- √ NetBIOS
- ✓ PPTP
- ✓ RSH
- ✓ SNMP
- √ Sun RPC/RPC Port Map Services
- ✓ TFTP
- ✓ Traceroute
- ✓ Unix Remote Shell Service
- √ WINFrame
- ✓ DNS
- √ FTP
- ✓ AIM Downloads
- ✓ MSN, Yahoo Messenger.
- √ NetMeeting
- √ NetMeeting Directory
- √ NETSHOW
- ✓ Facebook

- Netflix Party
- ✓ Nintendo WII
- √ Team Fortress 2
- ✓ Xbox Peer to Peer
- ✓ CuSeeMe
- ✓ Iclips
- ✓ IIOP
- √ ILS
- √ LG- Home Monitoring
- ✓ MMS
- ✓ Oovoo
- √ QQ
- √ RAS
- ✓ RTSP
- ✓ SQLNET
- Stream Works

IPv6 Migration Technologies

Dual-Stack Lite (DS-Lite)

- IETF Draft RFC 6333
- Leverages LSN to scale IPv4 addresses
 - But provides a strong IPv6 migration path
- Alleviates the addressing issues with native LSN
- > Single NAT device (only in the ISP domain)
- Enables incremental IPv6 deployment
- Simplifies management of the service provider network
 - Only one layer of NAT
 - More IPv6-only equipment in the network

DS-Lite Network

Customer Driven Innovation

- Carry IPv4 packet over IPv6 tunnel(IPv4-in-IPv6), on "IPv6 ONLY" Access Network
- > Provide Tunnel De-capsulation and IPv4-to-IPv4 Address Translation on AFTR Element (Concentrator)
- > Global IPv4 address saving by sharing the addresses among multiple users.
- > Reduce Management/Operational cost
- > CPE must support DS-Lite Client (B4 element) functionality

23

NAT64

- Connectivity between IPv6 clients and IPv4 destinations
- Translation between IPv6 and IPv4
- Used with DNS64
- Used for IPv6 migrated clients to connect to IPv4-only content, to maintain user experience
- Other primary features:
 - Full-Cone NAT
 - Hairpinning support
 - A10 Added
 - ♦ Session Sync
 - **♦ Logging**
 - ♦ User Quotas

NAT64

- Connectivity between IPv6 clients and IPv4 destinations
- Translation between IPv6 and IPv4
- Used with DNS64
- Used for IPv6 migrated clients to connect to IPv4-only content, to maintain user experience
- Other primary features:
 - Full-Cone NAT
 - Hairpinning support
 - A10 Added
 - ♦ Session Sync
 - **♦ Logging**
 - ♦ User Quotas

NAT64 & DNS64 – DNS Flow

NAT64/DNS64 device owns IPv6 Prefix 2001:DB8:122:344::/96

NAT64 & DNS64 – Packet Flow

NAT64 owns IPv4 Address Pool 204.16.75.0/24

IPv6 Rapid Deployment (6rd)

- > RFC 5569
- Enables IPv6 connectivity over IPv4 networks
- Based on 6to4 (RFC 3056), but addresses issues with 6to4 deployments
- Stateless technology uses 6rd CPEs & 6rd Gateways
- Changes over 6to4
 - ◆ Standard 6to4 prefix 2002::/16 replaced by ISP prefix (<= /32)
 - 6to4 anycast address replaced by another address
- Considerations:
 - Requires CPEs to be upgraded
 - Tunneling fragmentation

6rd - Topology

Native IPv6
Packets

Native IPv4
Packets

IPv6-in-IPv4 — — —
Tunneled Packets

- > 6rd does not provide IPv4 preservation
- Nat444 can be deployed concurrently with 6rd gateway to extend IPv4 service life

Stateless NAT46

- Allows IPv4 clients to connect to IPv6 servers
- Stateless IPv4<->IPv6 Translations
- Server IPv6-IPv4 address mappings statically configured by administrator
- > 96-bit IPv6 prefix configured for Source IPv4 address translations
 - e.g. 2001:db8::/96
- AX will support up to 8192 static mappings
- > IPv4<->IPv6 translations performed using RFC 2765, 6145

Stateless NAT46 - Packet Flow

IPv4/v6 Static Mappings				
Server IPv6 Address	NAT46 IPv4 Address			
2006::7.7.7.1	7.7.7.1			
2004::11.11.11.2	11.11.11.2			

NAT46 device owns IPv6 Prefix 2001:DB8::/96

IPv4 Preservation and IPv6 Migration Paths for SPs

	NAT44(4)	6rd	DS-Lite	NAT64/ DNS64
IPv4 Exhaustion	✓	*	✓	*
IPv6 Content Access	*	✓	√ *	*
IPv6-Only-Client Access to IPv4	*	*	×	✓
Access network	v4	v4	v6	v6
Destination	v4	v4/v6	v4/v6	v4/v6
СРЕ	v4	v4/v6	v4/v6	v4/v6

64-bit Customer Driven Innovation

Dual-Stack

Encapsulation

Translation

A10 Product Overview Super-Computing Gateways

A10 Company Overview

Founded in Late 2004

CEO & Founder
Lee Chen

Lee Chen

Co-founder of Foundry Networks, Centillion Networks

Headquarters in San Jose

Offices in 23 countries; customers in 43 countries

Leader in Application Networking

Optimizing the performance and security of data center applications and networks for web giants, enterprises and service providers

Benefits of ACOS Shared Memory

Conventional IPC Architecture

ACOS Shared Memory

Benefits of ACOS Shared Memory

- Zero Memory Duplication
- > Zero IPC
- > Zero Locking
- Zero Scheduling
- Zero Interrupts

ACOS Shared Memory

ACOS Platform: High Performance Application Networking

Linear Scaling – Shared Memory Architecture

Benefits:

- Cost
- Power
- Heat
- Size

Resource Efficiency

Conventional IPC Memory Architecture

A10 ACOS Shared Memory Architecture

Thunder 6430S – 150 Gbps, 512Mill CEC - 1 RU

Customer Driven Innovation

Recent Accolades

Ranked as #2 fastest growing private company in Silicon Valley

- 1,352% 3-year percent change in revenue
- Winner for third consecutive year (#2 in 2011), (#4 in 2010), (#13 in 2009)

Ranked as #1 Computer Hardware company

- Listed 2 consecutive years
- Top 10 Internet Company
- Top 10 East Asian Entrepreneur

BayAreaNewsGroup

Ranked #3 in Midsize category.
Winner for three consecutive years.
Top technology company in category.

AX 3530 won two Grand Prize awards for: Performance Optimization with aVCS and ShowNet Demonstration for IPv6 Migration solutions.

A10 Customers

Service Provider &

A10 Customers

Some specific LSN/CGN + NAT64 references:

Just few specific LSN/CGN + DS-<u>Lite</u> references:

Additional Solution Highlights

Logging

- Scalable, low impact, high performance and highly configurable
- Advanced features (Fixed-NAT/Zero-Logging, Port Batching, policy-based logging, compact logging, binary logging and others)

High Availability

- Fully stateful
- Active-Standby or Active-Active
- Session synchronization for uninterrupted service following failover
- Multiple High Availability sets in the same network for greater service protection

> Flexibility of Deployment

- Inline Mode
- One-armed Mode

Management Through IPv6

- Full native IPv6 and IPv4 management and feature support
- SSH, HTTP, HTTPS, SCP, and SFTP support

IPv6 Routing

- Static IPv6 route and neighbor configuration
- Dynamic routing OSPFv3, IS-IS, RIPng, BGP4+

Application Level Gateways (ALGs)

◆ FTP, TFTP, RTSP, PPTP, SIP, ICMP, DNS

A10 LSN innovation

R2.6.6

R2.6.6P1

R2.6.6P2

R2.6.6P3

R2.6.6P4

Oct 11

11

Dec 11

Feb 12

May 12

Nov 1

IPv6 Migration Enhancements

- Concurrent CGN, DS-Lite, NAT64 and 6rd with full RFC compliance
- ➤ Stateless NAT46
- Port Control Protocol (PCP)
- Port Overloading
- Configurable data session limits
- NAT64 special fragment handling
- TCP maximum segment size (MSS) clamping for LSN
- IPv6 Duplicate Address Detection and logging
- > Session quotas with reserve
- ➤ LSN Rule Lists for Matching and Traffic Handling based on destination IP address, L4 protocol or L4 port
- Per Protocol/Port EIM/EIF, STUN, and translation timeouts
- IPv6 Ready Certification

Logging Enhancements

- > Log size reduction
 - > Compact/Hex logging format
 - > Binary logging format
- ➤ Log Volume reduction
 - Port Batching
 - ➤ Fixed NAT
- Port batching support for batch size 1024
- > External Logging over TCP
- External Logging to RADIUS server
- > RFC 5424 syslog and customizable log format
- ➤ Netflow V9 and sFlow support

Purpose Built Hardware

- > Ax-3530
 - ➤ 256M concurrent sessions
 - ➤ 115GPS
 - ➤ 1.125M CPS
 - > 20K outside IP addr
- > Ax-5200-11
 - ≥ 256M concurrent sessions
 - ➤ 40 GPS
 - ➤ 1.8M CPS
 - > 20K outside IP addr

Thank You

Any App

Any Cloud

Any Size

www.a10networks.com