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Questions

~

What is a Digital Twin Network?

-
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What can it be useful for?

N J

4 )
How can we build one?

: <
How far are we from building it?

N J
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How can we leverage Al/ML for this?
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Motivation

* The Internet is a huge, complex and dynamic system
e >20B connected devices (and growing)?
* 50000 GB/s of data moved daily by the Internet!
2.5 Exabytes (10*8) of new data created daily?

* Digital Twin paradigm
 Virtual model of a physical object or system represented in the digital world
* Models complex and dynamic systems
* Examples: Aerospace, Aeronautics, Industry 4.0, etc.

1 Cisco Annual Internet Report (2018-2023) White Paper
2 https://www.ibmbigdatahub.com/infographic/four-vs-big-data



Digital Twin Network (DTN)
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BNN-UPC, Digital Twin Network: Opportunities and Challenges (2022). https://arxiv.org/abs/2201.01144

 Virtual replica of the
communication network

* Model intricacies of real
networks in the virtual world

e Test new configurations
without compromising the
actual network

* |ETF, ITU-T working on it

1C. Zhou et al., “Digital Twin Network: Concepts and
Reference Architecture,” IETF, Internet-Draft, 2022.

2|TU-T, “Digital twin network: Requirements and
architecture,” Recommendation ITU-T Y.3090, 2022.




DTN applications

Network planning

e Topology design
e Network dimensioning

Performance analysis

e Delay, jitter, loss
e SLA prediction
e Estimate operational bounds

What-if analysis

e Failures
e Traffic changes
e Configuration changes

Network optimization

e Traffic Engineering

e Support more SLA with
current resources

Troubleshooting

e Performance issues
e Anomaly detection

Education and training

e Certifications
e Learning




Whatis a DTN for us?
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A DTN can be as simple or complex as required by the use case



Why does it not exist yet?

Examples Accuracy

Queuing Theory,
Fluid models, ...

NS-3, Omnet++,

Analytical models

simulators Packet Tracer, ...
Emulators GNS3, Mininet,

ENI
Testbeds Fed4FIRE, GENI,

Neural networks MLP, CNN, RNN,




Our research question

Accurate as network Efficient as analytical
simulators models



Limitations of traditional NN

* Current proposals do not generalize to other networks

* Can they be accurate? Yes, but they require training on customer premises
* Network instrumentation
* Performance degradation
 Service disruption

1 RNN BN MLP
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 Why do they not generalize?
* Networks are essentially graphs (input)
 Variable size input (nodes/edges)
* Information is relational
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Our vision

(1) Speed and accuracy (2) Generalization
e Enables online optimization e Operation in networks never
e Self-driving networks, closed- seen in training
loop operation e Enables instant deployment
(3) Scalability (4) Accessibility
e Scale to much larger networks e Accessible to non-ML experts
e Enables trainingin a e Enables easier adoption
controlled testbed

10



Graph Neural Networks

* GNN are a key technology to build a DTN because:
* Assembled dynamically based on the input graph
e Support variable sized input graphs
* Model relational information (e.g. graph isomorphism)
* Generalize to different graphs

Phase 1: Initialization Phase 2: Message Passing phase (example on node i Phase 3: Readout
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BNN-UPC, GNN for Communication Networks: Context, Use Cases and Opportunities (2021). https://arxiv.org/abs/2112.14792 11



RouteNet

* RouteNet is the reference GNN for network modeling
* |t can operate in networks never seen in training
Networks several orders of magnitude larger
Cost equivalent to analytical models
Accuracy equivalent to simulation T ierations
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BNN-UPC, RouteNet-Erlang: A Graph Neural Network for Network Performance Evaluation. IEEE INFOCOM (2022). https://arxiv.org/abs/2202.13956 12



RouteNet-E: Performance

Experiment setup:
- Training: 100K samples,
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RouteNet-E: Performance
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BNN-UPC, RouteNet-Erlang: A Graph Neural Network for Network Performance Evaluation. IEEE INFOCOM (2022). https://arxiv.org/abs/2202.13956 14




How to train @ DTN?

* Previous ML approaches proposed online training (or transfer learning)
* Not practical from a product point of view
* Training models is a huge effort, requires a large data set and instrumentation
* Can cover all possible situations

* Can lead to degraded performance or service disruption
/_ rmance
Digital Twin « Per-flow delay
Network s
* Traffic matrix k =
* Models can be validated before deployment |

e Can provide safety bounds
.

Network configuration

* RouteNet enables offline training in
a controlled testbed or simulator
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Conclusions

Examples Accuracy

_ Queuing Theory,
Analytical models Fluid models, ...

Simulators NS-3, Omnet++,
Packet Tracer, ...

Emulators GNS3, Mininet,
Testbeds Fed4FIRE, GENI,
Traditional MLP, CNN, RNN,

Neural networks
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Conclusions

Tool Examples

Accuracy
Analytical models Queuing Theory,

Fluid models, ...

Simulators NS-3, Omnet++,
Packet Tracer, ...

Emulators GNS3, Mininet,
Testbeds Fed4FIRE, GENI,
Traditional MLP, CNN, RNN,

Neural networks
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Conclusions

Tool Examples

Accuracy
Analytical models Queuing Theory,

Fluid models, ...

Simulators NS-3, Omnet++,
Packet Tracer, ...

Emulators GNS3, Mininet,
Testbeds Fed4FIRE, GENI,
Traditional MLP, CNN, RNN,

Neural networks

Graph Neural
Networks RouteNet-E
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Learn: All papers are free online
https://github.com/BNN-UPC/Papers/wiki

Play: Code and Datasets open-source
https://bnn.upc.edu

Code: IGNNITION framework
https://ignnition.net

Challenge yourself: GNN Challenge
https://bnn.upc.edu/challenge




Backup slides



Whatis a DTN for us?

Network configuration

e Topology
e Routing -]
e Scheduling polices ( \ Network performance
7 Digital Twin « Per-flow delay
> o Per-flow jitter
N EtWO rk e Per-flow loss
Network traffic \ ) ...

¢ Traffic matrix
¢ Traffic models
* Flow level

A DTN can be as simple or complex as needed
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Limitations of traditional NN

 Why do they not generalize?
* Networks are essentially graphs (input data)
e Graphs are of variable size (links and nodes)

* Information is relational (as opposed to Euclidian or sequential)
* Modeling networks with traditional NN is very hard!
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RouteNet-E: Algorithm

Algorithm 1 Internal architecture of RouteNet-E

Input: F, Q, L, :rf, Tz Bl
Output: 11, AT, h s Uiy Yo it
. for each [ € L do hY < [z1,0...0]

y_.

2: for each ¢ € Q do h) + [4,0...0]

3: for each f € F do h} « [xf,0...0]

4: for t = 0 to T-1 do > Message Passing Phase Device,

5: for each f € I do > Message Passing on Flows (output port) Device,

6: for ea:ch (g,)) € f d(t) . a (output port) Device,

5 3 ueue .
7 h 7 FRNN(h ,[hq, hf]) > Flow: Aggr. and Update ! Link, Link, - Link, (output port) = Link,,
8 ~;+ql — h} > Flow: Message Generation R 40Gbs QU‘E-\ 10Gbs ZOGbs Queue 10Gbs
i ueue, Q"‘E./ ’ :._'
9 h
F f
10 for each a€ Q do > Message Passing on Queues Qeans. l
t+1 . :

11 Mg« £eQs(q) f q > Queue: Aggregation Traffic model #1 > Flow, mem———— i >
12: ht+1 «— Us (ht Mt+1) > Queue: Update Traffic model #2 > Flow, Yy =

13: m t+1 - h1t+l > Queue: Message Generation Traffic model #3 > Flow, L 2

14: for each le L do > Message Passing on Links

15: for each ¢ € L,(1) do

16: ht < LRNN(ht,m4t!) > Link: Aggr. and Update

17: ht“ — ht

18: 4y < Ry (hT 7£ > Readout phase

19: 9 + Rq(hy)
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RouteNet-E: Scalabilty

e OQut-of-distribution
* Larger paths
* Larger link capacities
e Output distributions (delay)

I T T E e E e EEEE e |
| Delay,, = Avg_utilizationy, . Sizeq, / Cap,; |
1500 A E E

1 N = k ]
1000 - i_ Delavpath = Ekilln ® DelayLk E
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Our solution

* Small-scale testbed at vendor premises (before deployment)
* Leverage GNN generalization/scalability features

Network configuration

* Topology
® Routing
« Scheduling polices [ \ Network performance
Digltal TWi n * Per-flow delay
e Per-flow jitter
L e T
Network traffic \ ) ...

a

* Traffic matrix

 Traffic models
* Flow level

Data sets need to contain
all possible scenarios,
including those that result
in poor performance or
service disruption !!

Generate as many as possible combinations
of inputs and measure outputs
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Multi-Agent Distributed Optimization

Agent that operates networks
autonomously

e Exchanges messages (protocol) with
other agents

* Uses a GNN to learn message
contents

* Optimizes network performance
using Multi-Agent RL

e Example: Traffic Optimization,
Congestion, etc.

* Scales well as it naturally (GNN)
distributes load among devices

* Supports offline learning, can
operate in unseen networks

26



MARL+GNN: Optimization

TabulGPWQ === DEFQ === SRLS === MAGNNETO TabulGPWO DEFQO === SRLS === MAGNNETO
1.00 1.00
TabulGPWO TabulGPWO
0.75 0.75
DEFO DEFO
=, =<
EL’O'50 IO.SO
SRLS SRLS
0.25 0.25
MAGNNETO MAGNNETO
0.00 0.00
0% 10% 20% 30% 40% 50% 60% 0% 5% 10% 15% 20% 25% 30% 35% 40%
MinMaxLoad Improvement w.r.t. Default OSPF MinMaxLoad Improvement w.r.t. Default OSPF
(a) TopologyZoo Uniform (b) TopologyZoo Gravity

MARL (Proximal Policy Optimization) + GNN
100 TM (uniform / gravity)

75 topologies from Topology Zoo

Trained with 2 topologies (NSFnet, GEANT2)
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