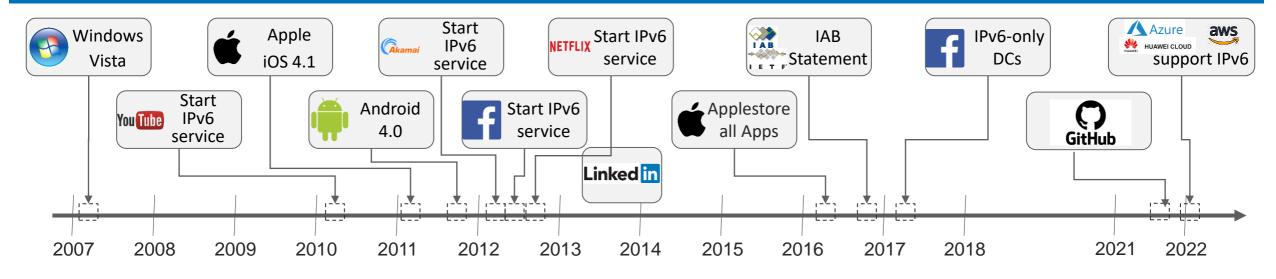
RFC 9386 - IPv6 Deployment Status, Remaining Challenges, and the Way Forward


Agenda

- The Value of IPv6
- IPv6 Status
- Challenges and Collaboration Areas

IPv6 Grows Fast since 2017

"UEs – Networks – Applications" Value Chain Ready

IETF transition solutions ready by 2011; UEs & big applications ready by 2017; public clouds getting ready in 2022 (to move SMEs to IPv6)

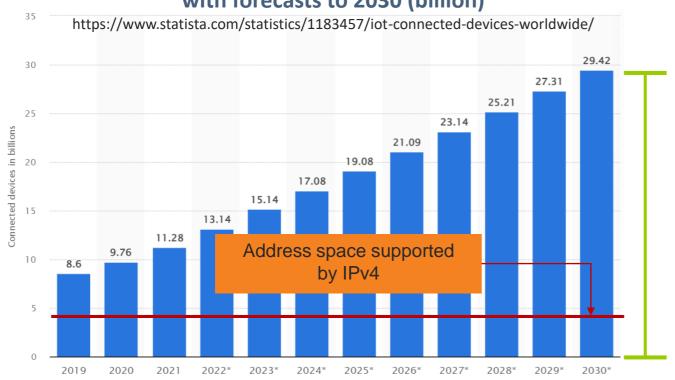
In IPv6 value chain, networks slightly behind UEs and big applications/clouds

UEs: 90%+ support IPv6 [1]

Networks: ~45% support IPv6 [2]

Clouds: 70%+ support IPv6 [3]

Output


Clouds: 70%+ support IPv6 [3]

Clouds: 70%+ support IPv6 [3]

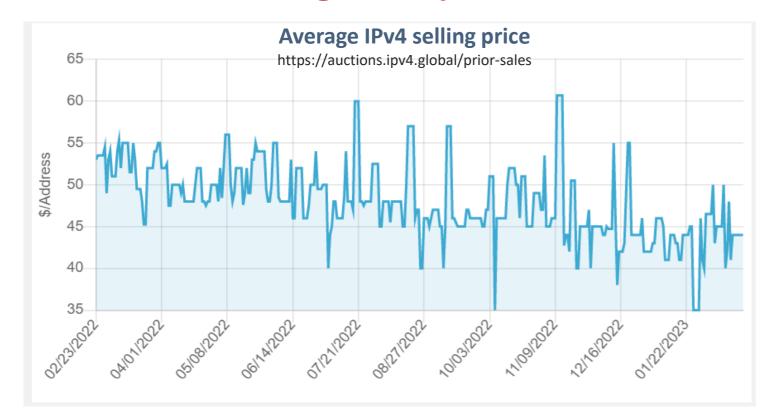
- [1] https://www.ipv6ready.org/ [2] https://bgp.potaroo.net/as2.0/bgp-active.html + https://bgp.potaroo.net/v6/as2.0/index.html
- [3] https://www.statista.com/statistics/267184/content-delivery-network-internet-traffic-worldwide/

IPv6 Enables New Applications

IoT connected devices worldwide 2019-2021, with forecasts to 2030 (billion)

Demand For Wider Address Space

- New applications (e.g., IoT, VR/AR, V2X...) demand increased address spacing.
- IoT domain expected to reach ~30B devices.
- Many will need external, bidirectional communication.
- Arcep [1]: IPv6 key to ensuring competitiveness, fair access to the market, and innovation.

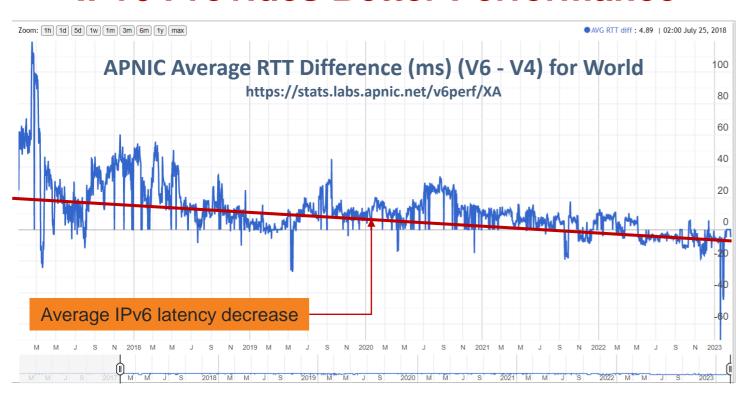

[1] Arcep IPv6 Barometer

https://www.arcep.fr/fileadmin/reprise/observatoire/ipv6/Arcep_2020_Barometer_of_the_Transition_to_IPv6_dec2020.pdf
[2] IPv6 @ Facebook, https://www.ipv6.org.uk/wp-content/uploads/2018/10/FB IPv6-UK-Council Dec2017.pdf

Use of IPv6 address space in Content and Cloud Providers

- The driver is the high number of addresses required to connect the virtual and physical elements in a DC to overcome the limitation posed by private IPv4 addressing [RFC1918].
- They are at different stages in the transition to an IPv6-only [2]. RFC 9386 contains several references to look at.

IPv4 Is Getting Costly


CG-NAT Removal Case

- Removal of CG-NAT and adoption of IPv6 saves operational cost in millions.
- Case discussion:
 - Average selling price per IPv4 address in 2022-2023: 50 USD per address
 - 16:1 IPv4 sharing
 - For 1M users, 1M * 50 / 16 = 3.12M USD only for avoiding IPv4 address usage
 - In addition, saving on NAT hardware and log (ca. 1M USD every 1M users).
- Plus: sell or rent IPv4 for millions in profit.

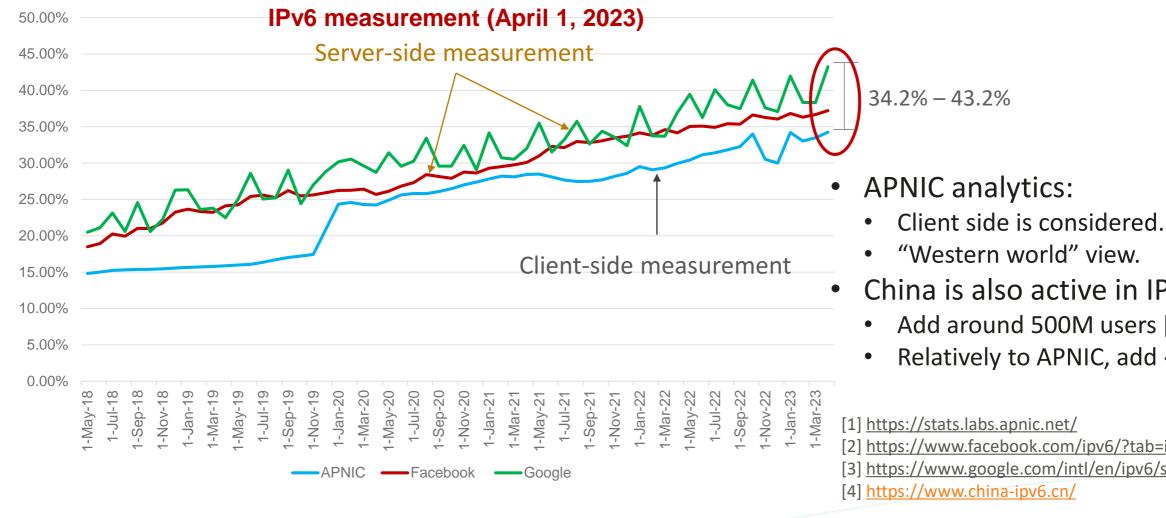
Mythic Beasts Hosting Provider (https://datatracker.ietf.org/doc/slides-115-v6ops-08-mythic-beasts-ipv6-only-hosting/)

- Infrastructure based on both IPv4 and IPv6 Virtual Machines running on Raspberry PI servers deployed in 6 DCs.
- Strive to keep pace with the growth of servers in cloud configuration. IPv4 address cost main issue. IPv6 transition a necessity.
- When business started, IPv4 address cost was 1-2\$, a Raspberry server was 5\$. Today, costs are 50\$ and 5\$, respectively.
- Business case proposal: renting a \$50 IPv4 for \$2/month, annual return is 48%. US 10Y yield 4%.

IPv6 Provides Better Performance

IPv6 Lower Latency

- Worse IPv4 latency related to NAT / middle-boxes traversal.
 - Contribution of NAT traversal itself.
 - Traffic detour in carriers' networks to reach a centralized CG-NAT.
- IPv6 steering not affected, hence a general decrease of IPv6 latency across regions.


Akamai Experience Shared at APNIC 52 (https://conference.apnic.net/52/assets/files/APBS588/akamai-ipv4-ipv6-experience.pdf)

- In their measurement, delivering content via dual-stack, IPv6 usually reaches lower Round Trip Time (RTT).
- Among the reasons, Akamai lists:
 - More efficient routing, with often smaller routing table in IPv6.
 - IPv6 routers do not need to fragment, as fragmentation is handled by source devices.
 - Fewer middle boxes to cause latency increase.

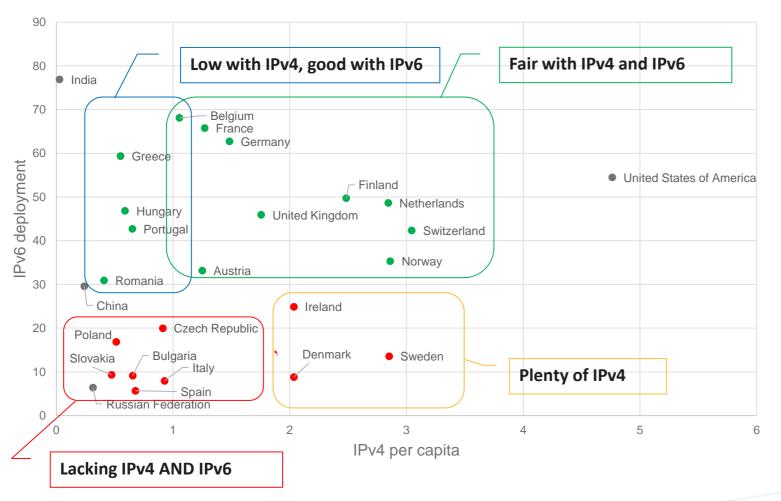
Agenda

- The Value of IPv6
- IPv6 Status
- Challenges and Collaboration Areas

IPv6 Growth Is Steady

China is also active in IPv6:

Add around 500M users [4].


Relatively to APNIC, add ~10%.

[2] https://www.facebook.com/ipv6/?tab=ipv6_country

[3] https://www.google.com/intl/en/ipv6/statistics.html

The growth of IPv6 users is steady, pushed by need of addresses and government policies.

Government Policies And Market Ambition Could Harmonize IPv6 Adoption In Europe

- The graph shows the "IPv4 per capita" availability per country.
- In Europe, the lack of IPv4 addresses is not necessarily a reason for deploying IPv6.
- Regulatory or government push, instead, has an important effect.
 - Red Country: quite below the world IPv6 trends (lack of actions)
 - Green Country: close or above the world trends.
- [1] https://datatracker.ietf.org/doc/draft-ietf-v6ops-ipv6-deployment/
- [2] https://resources.potaroo.net/iso3166/v4cc.html
- [3] https://resources.potaroo.net/iso3166/v6cc.html

If governments, industry, market take actions then IPv6 moves ahead, as in Belgium, France, Germany.

IPv6 Adoption Across Spain

ASN	AS Name	IPv6 Capable	IPv6 Preferred	Samples ▼
AS3352	TELEFONICA_DE_ESPANA	8.20%	8.00%	1,712,492
AS12479	UNI2-AS	3.48%	3.41%	1,334,830
AS15704	XTRA Telecom	0.12%	0.11%	916,688
AS12430	VODAFONE_ES	0.02%	0.02%	722,234
AS57269	DIGISPAINTELECOM	52.36%	51.23%	392,680
AS6739	ONO-AS Cableuropa - ONO	0.01%	0.01%	349,089
AS12338	EUSKALTEL	0.01%	0.01%	151,301
AS200845	ESWIKIKER AVATEL TELECOM	0.01%	0.01%	114,727
AS29119	SERVIHOSTING-AS AireNetworks	2.24%	2.18%	61,380
AS12334	Galicia - Spain	0.02%	0.02%	52,720
AS35699	ADAMOEU-AS Adamo Telecom Iberia S.A.	0.01%	0.01%	42,942
AS34977	PROCONO-AS	0.02%	0.01%	37,483
AS12946	TELECABLE Spain	0.02%	0.02%	32,776
AS48146	TRIPLEA	0.03%	0.03%	24,823
AS201746	OLIVENET-AS	0.04%	0.04%	13,098

Source: https://stats.labs.apnic.net/ (May 14, 2023)

Agenda

- The Value of IPv6
- IPv6 Status
- Challenges and Collaboration Areas

Remaining Challenges: Cooperation to Work Them out

Motivation

Ecosystem

Areas often affecting enterprises.

Experience sharing from leading carriers and IPv6 councils can greatly help.

- Several stakeholders don't get the compelling reason to make the transition.
- Lack the business case, or pressure to move.
- Think that IPv6 may be delayed, e.g. with NAT or IPv4 purchase.
- Classes of devices still not supporting IPv6 (e.g. old CPEs, smart TVs).
- Cloud providers moving to IPv6, but many SMEs aren't.
- Vendors' roadmap evolution not in line as IPv4.

- Technical staffs not aware of IPv6 deployment.
 - Don't know IPv6 standards, best current practices and operational guidelines.
 - Even worse, think IPv6 still has many issues to be solved.
- Standards, Operations

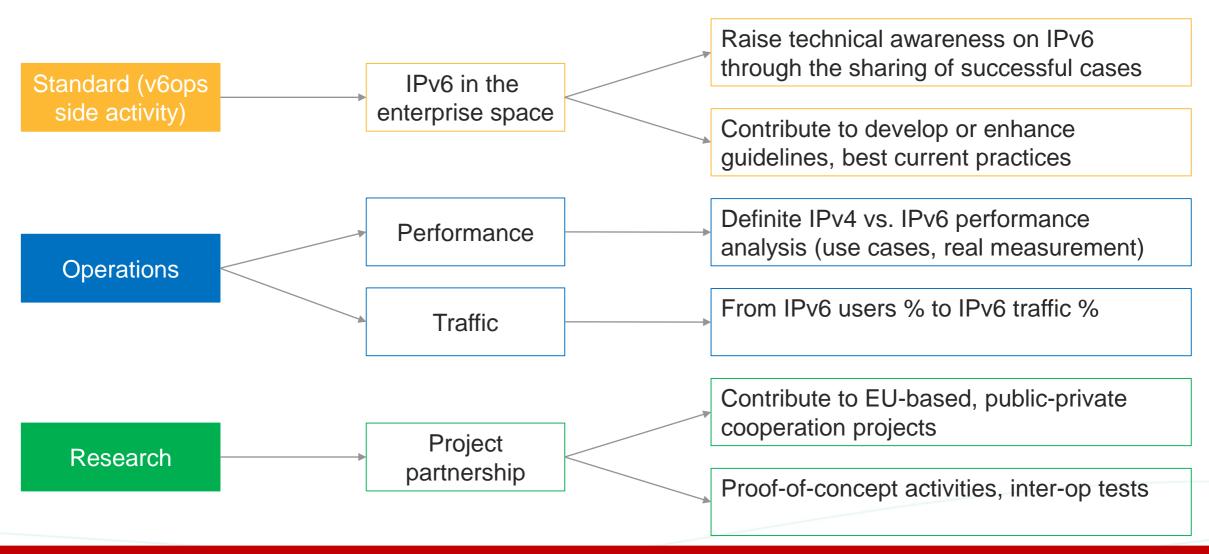
Knowledge

- Difficulty to identify transition path and technologies, in particular for SMEs.
- Technical areas should need more investigation or completion.
- IPv6 Security perceived as still difficult.

Vendors' legacy.

ICT industry as a whole needs to act.

Open aspects in standardization.


RIPE, NOGs... can lead to solve the technical issues.

Current Topics in Standardization

IETF WG	Topic	References https://datatracker.ietf.org/doc/	
v6ops	Hosts isolation to prevent potential neighbor discovery protocol issues	draft-ietf-v6ops-nd-considerations/	
v6ops	Site connectivity to many carriers	draft-fbnvv-v6ops-site-multihoming/	
v6ops	Limiting the sending/processing of IPv6 EHs	draft-ietf-6man-eh-limits/	
v6ops	Using DHCP-PD to allocate unique IPv6 prefix per host in broadcast networks	draft-collink-v6ops-ent64pd/	
6man	Signaling DHCPv6 prefix delegation availability to hosts	draft-collink-6man-pio-pflag/	
6man	IPv6 Hop-by-Hop Options processing procedures	draft-ietf-6man-hbh-processing/	
6man	Architecture and framework for IPv6 over Non- Broadcast Access	draft-ietf-6man-ipv6-over-wireless/	
Spring	SRv6 related work	Very active working group!	

Is there anything missing? We are very open to listen to you for any requirements left out!

Pushing IPv6 Further – Areas for Cooperation

We welcome further ideas to promote IPv6 deployment.

Summary

- IPv6 progression is steady.
 - The value chain is ready.
 - Approaching the critical threshold of 50% Internet users.
 - IPv6 performance better than IPv4.
- Industry needs to jointly work to overcome the last few challenges.
 - Addressing the concerns of enterprises and verticals still lagging behind with IPv4 services.
 - Working with policy-makers to make them aware of the need to transition to IPv6 to create market stimulus.
 - Providing coordination across stakeholders to drive Internet evolution to IPv6.
- Feel free to engage with us for an open and cooperative action to further encourage the Industry to adopt IPv6.

Thank You.

paolo.volpato@huawei.com